Linear Stability of Partitioned Runge–Kutta Methods
نویسندگان
چکیده
منابع مشابه
Linear Stability of Partitioned Runge-Kutta Methods
We study the linear stability of partitioned Runge–Kutta (PRK) methods applied to linear separable Hamiltonian ODEs and to the semidiscretization of certain Hamiltonian PDEs. We extend the] by presenting simplified expressions of the trace of the stability matrix, tr Ms, for the Lobatto IIIA–IIIB family of symplectic PRK methods. By making the connection to Padé approximants and continued fract...
متن کاملEffective order strong stability preserving RungeKutta methods
We apply the concept of effective order to strong stability preserving (SSP) explicit Runge–Kutta methods. Relative to classical Runge–Kutta methods, effective order methods are designed to satisfy a relaxed set of order conditions, but yield higher order accuracy when composed with special starting and stopping methods. The relaxed order conditions allow for greater freedom in the design of ef...
متن کاملLong-Term Stability of Symmetric Partitioned Linear Multistep Methods
Long-time integration of Hamiltonian systems is an important issue in many applications – for example the planetary motion in astronomy or simulations in molecular dynamics. Symplectic and symmetric one-step methods are known to have favorable numerical features like near energy preservation over long times and at most linear error growth for nearly integrable systems. This work studies the sui...
متن کاملStability of Explicit Symplectic Partitioned Runge-Kutta Methods
A numerical method for solving Hamiltonian equations is said to be symplectic if it preserves the symplectic structure associated with the equations. Various symplectic methods are widely used in many fields of science and technology. A symplectic method preserves an approximate Hamiltonian perturbed from the original Hamiltonian. It theoretically supports the effectiveness of symplectic method...
متن کاملOn the Linear Stability of Splitting Methods
A comprehensive linear stability analysis of splitting methods is carried out by means of a 2 × 2 matrix K(x) with polynomial entries (the stability matrix) and the stability polynomial p(x) (the trace of K(x) divided by two). An algorithm is provided for determining the coefficients of all possible timereversible splitting schemes for a prescribed stability polynomial. It is shown that p(x) ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Numerical Analysis
سال: 2011
ISSN: 0036-1429,1095-7170
DOI: 10.1137/100787234